

INTELLIGENT SYSTEMS (CSE-303-F)

Section B

Heuristic Search

Blind Search

Last time we discussed BFS and

DFS and talked a bit about how

to choose the right algorithm for

a given search problem.

But, if we know about the problem

we are solving, we can be even

cleverer…

Revised Template

• fringe = {(s
0
, f(s

0
)}; /* initial cost */

• markvisited(s
0
);

• While (1) {

If empty(fringe), return failure;

(s, c) = removemincost(fringe);

If G(s) return s;

Foreach s’ in N(s)

 if s’ in fringe, reduce cost if f(s’) smaller;

 else if unvisited(s’) fringe U= {(s’, f(s’)};

 markvisited(s’);

 }

Cost as True Distance

4

G

G

4

3

3

4

4

5

5

5

4

G

4

3

3

4

4

5

5

5

4

2

3

4

G

4

3

3

4

4

5

5

5

4

2

3

4

3

2

1

2

3

0

4

3

3

4

4

5

5

5

4

2

3

4

3

2

1

2

3

2

2

1

1

0

4

3

3

4

4

5

5

5

4

2

3

4

3

2

1

2

3

2

2

1

1

Some Notation

Minimum (true) distance to goal

• t(s)

Estimated cost during search

• f(s)

Steps from start state

• g(s)

Estimated distance to goal (heuristic)

• h(s)

Compare to Optimal

Recall b is branching factor, d is

depth of goal (d=t(s
0
))

Using true distances as costs in

the search algorithm (f(s)=t(s)),

how long is the path

discovered?

How many states get visited

during search?

Greedy

True distance would be ideal.

Hard to achieve.

What if we use some function h(s)

that approximates t(s)?

f(s) = h(s): expand closest node

first.

Approximate Distances

We saw already that if the

approximation is perfect, the

search is perfect.

What if costs are +/- 1 of the true

distance?

 |h(s)-t(s)|  1

Problem with Greedy

Four criteria?

0

2

2

1

1

2

1
…

2

1

Algorithm A

Discourage wandering off:

 f(s) = g(s)+h(s)

In words:

 Estimate of total path cost: cost

so far plus estimated completion

cost

Search along the most promising

path (not node)

A Behaves Better

Only wanders a little

0

2

2

1

1

2

1
…

2

1

3

2 3

3

2 3 4

5 3

3

A Theorem

If h(s)  t(s) + k (overestimate

bound), then the path found by A

is no more than k longer than

optimal.

A Proof

f(goal) is length of found path.

All nodes on optimal path have

f(s) = g(s) + h(s)

  g(s) + t(s) + k

 = optimal path + k

How Insure Optimality?

Let k=0! That is, heuristic h(s)

must always underestimate the

distance to the goal (be

optimistic).

Such an h(s) is called an

“admissible heuristic”.

A with an admissible heuristic is

known as A*. (Trumpets sound!)

4

G

G

5

4

4

5

4

6

6

6

4

A* Example

G

5

4

4

5

5

6

6

6

4

4

5

6

5

4

G

5

4

4

5

5

6

6

6

4

4

5

6

6

5

4

4

5

6

5

4

6

4

5

4

4

5

5

6

6

6

4

4

5

6

6

5

4

4

5

6

5

4

6

6

5

5

5

6

4

5

4

4

5

5

6

6

6

4

4

5

6

6

5

4

4

5

6

5

4

6

6

5

5

5

6

Time Complexity

Optimally efficient for a given

heuristic function: No other

complete search algorithm

would expand fewer nodes.

Even perfect evaluation function

could be O(b
d
), though. When?

Still, more accurate better!

Simple Maze

S

G

4

G

4

G

5

6

4

4

5

5

6

6

4

G

5

6

4

4

5

5

6

6

6

5

6

4

G

5

6

4

4

6

6

5

7

5

6

7

5

5

6

6

7

7

7

7

4

5

5

6

4

4

5

5

6

6

6

5

6

7

5

6

7

5

5

6

7

7

6

6

6

7

7

7

7

7

Relaxation in Maze

Move from (x,y) to (x’,y’) is illegal

• If |x-x’| > 1

• Or |y-y’| > 1

• Or (x’,y’) contains a wall

Otherwise, it’s legal.

Relaxations Admissible

Why does this work?

Any legal path in the full problem

is still legal in the relaxation.

Therefore, the optimal solution

to the relaxation must be no

longer than the optimal solution

to the full problem.

Relaxation in 8-puzzle

Tile move from (x,y) to (x’,y’) is

illegal

• If |x-x’| > 1 or |y-y’| > 1

• Or (|x-x’|  0 and |y-y’|  0)

• Or (x’,y’) contains a tile

Otherwise, it’s legal.

Two 8-puzzle Heuristics

• h
1
(s): total tiles out of place

• h
2
(s): total Manhattan distance

Note: h
1
(s)  h

2
(s), so the latter

leads to more efficient search

Easy to compute and provides

useful guidance

Knapsack Example

Optimize value, budget: $10B.

• Mark. cost value

• NY 6 8

• LA 5 8

• Dallas 3 5

• Atl 3 5

• Bos 3 4

Knapsack Heuristic

State: Which markets to include,

exclude (some undecided).

Heuristic: Consider including

markets in order of value/cost.

If cost goes over budget,

compute value of “fractional”

purchase.

Fractional relaxation.

Memory Bounded

Just as iterative deepening gives

a more memory efficient version

of BFS, can define IDA* as a

more memory efficient version

of A*.

Just use DFS with a cutoff on f

values. Repeat with larger

cutoff until solution found.

What to Learn

The A* algorithm: its definition

and behavior (finds optimal).

How to create admissible

heuristics via relaxation.

Homework 2 (partial)

1. Consider the heuristic for Rush Hour of counting

the cars blocking the ice cream truck and adding

one. (a) Show this is a relaxation by giving

conditions for an illegal move and showing what

was eliminated. (b) For the board on the next

page, show an optimal sequence of boards en

route to the goal. Label each board with the f

value from the heuristic.

2. Describe an improved heuristic for Rush Hour. (a)

Explain why it is admissible. (b) Is it a relaxation?

(c) Label the boards from 1b with the f values from

your heuristic.

Rush Hour Example

